Bectuuk TTY, 1.11, Boin.4, 2006

YK 539.107

A PERMUTATION GENERATION DNA-BASED ALGORITHM - AN EXAMPLE
OF A DNA COMPUTING KILLER APPLICATION

© Vojislav Stojkovic, Hongwei Huo

CroiikoBuy B., Xpt0o0 X. AIropuT™ reHepalvu nepectaHoBok, ocHoBanHbli Ha JIHK. B paGote npeacrasnex anroputm
reHepauHi nepectaHoBok, 3auMcTBoBanHbiil 13 JIHK. Takoit anropuT™ npeBocxoauT MmoOo# W3BECTHBII MOCIe10BaTE b~
HBIH Win napanienbHblil Gon HeliManoBCKUit anroput™ Ui 3HAYUTENBHOTO YUCIA INEMEHTOR. ANNOPUTM MOXKET ObITh
Bocnpon3BeneH Ha JHK-naboparopum win Ha [IHK-kommnbioTepe, a Takxke Ha ¢poH HeliMaHOBCKOM KOMMbIOTEpE AS He-

00AbILOrO KONUYECTBA EMEHTOB.

INTRODUCTION

The permutation generation problem is a motivating
computational puzzle, an interesting example of an applica-
tion of computer science in combinatorial mathematics,
one of the first nontrivial nonnumeric problems attacked by
mathematicians and computer scientists. The permutation
generation problem is to generate all possible ways of rear-
ranging n, n > 1, distinct items. The permutation generation
problem is simply stated, but not easily solved. The permu-
tation generation problem has a long and distinguished
history. Over one hundred Permutation Generation algo-
rithms have been published during the past twenty years.
The most well-know surveys of the field are D.H. Lehmer
[6] from 1960, R.J. Ord-Smith [8, 9] from 1970-1971, and
R. Sedgewick [10] from 1977. In 1956, C. Tompkins [15]
wrote a paper describing a number of practical areas where
permutation generation was being used to solve problems.

The study of existing and development of new methods
for permutation generation is still important today because
they illustrate the relationship between counting, recursion,
and iteration.

s Table 1
APPROXIMATE TIME TO GENERATE

PERMUTATIONS OF n-ELEMENTS
(1/msec per permutation)

n n! Time

1 1

2 2

3 ©

4 24

9 362880

10 3628800 3 seconds
11 39916800 40 seconds
12 479001600 8 minutes
13 6227020800 2 hours
14 87178291200 1 day

15 1307674368000 2 weeks
16 20922789888000 g months
17 355689428096000 10 years

558

The permutation generation problem has big the inherent
limitation difficulty. Without computers — for n > 10 the
permutation generation problem is practically not solvable.

Table 1 shows the values of n! and the computation
time. For n > 15 the computation time is too long.

Table 2

APPROXIMATE DISTRIBUTION OF PERMUTATION
GENERATION ALGORITMS

90% sequential algorithms (targeting one-processor
digital computers)

9% parallel algorithms (targeting multi-processor
digital computers)

1% parallel algorithms (targeting DNA, quantum, ...,

and others non
vonNeumann computers)

2. PERMUTATIONS

A permutation, also called an "arrangement number"” or
"order,” is a rearrangement of the elements of an ordered
list S into a one-to-one correspondence with S itself.

The number of permutations on a set of n elements is 7!
Example

There are 21=2*1=2 permutations of {1, 2}, namely
{1,2} and {2, 1}.

There are 3!=3*2*1=6 permutations of {1, 2, 3}, namely
{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and
{3,2,1}.

3. DNA

DNA, deoxyribonucleic acid, is a molecule found in
every living cell, which directs the formation, growth, and
reproduction of cells. DNA consists of nucleotides. Nu-
cleotides contain compounds called phosphate, deoxyri-
bose, and base. Within all nucleotides, phosphate and de-
oxyribose are the same, however, the bases vary. The four

Bectauk TI'Y, T.11, Bbin.4, 2006

distinct bases are: adenine (A), guanine (G), thymine (T),
and cytosine (C). The exact amount of each nucleotide and
the order in which they are arranged are unique for every
kind of living organism. DNA represents information as a
pattern of molecules on a DNA strand. A DNA strand is a
string of the alphabet {A, C, G, T}. The length of a DNA
strand is equal to the length of the string that represents the
DNA strand.

4. DNA COMPUTER

A DNA computer is a chemical instrument consisting
of a system of connected test tubes and other auxiliary
units. DNA computers use the chemical properties of DNA
molecules by examining the patterns of combination or
growth of the molecules or strings. DNA computers can do
this through the manufacture of enzymes, which are bio-
logical catalysts that could be considered the ‘software’
used to execute the desired DNA computation. DNA com-
puters represent information in terms of DNA. In DNA
computers, deoxyribonucleic acids serve as the memory units
that can take on four possible positions (A, C, G, or T). DNA
computers do not have the vonNeumann architecture. DNA
computers are massively parallel and are considered prom-
ising for complex problems that require multiple simulta-
neous computations. DNA computers perform computa-
tions by synthesizing particular sequences of DNA and
allowing them to react in test tubes. The task of the DNA
computer is to check each possible solution and remove
those that are incorrect, using restrictive enzymes. When
the chemical reactions are complete. the DNA strands can
then be analyzed to find the solution.

A super DNA computer is a programmable DNA com-
puter.

5. DNA COMPUTING

In 1961 Feynman [4] predicts in 1994 Adleman {1] re-
alized computations at a molecular level computing with
DNA. DNA computing began in 1994 when Adleman
showed that DNA computing was possible by solving the
Traveling Salesman Problem on a DNA computer. Adel-
man [2] used DNA polymerase and Watson-Crick com-
plementary strands to do DNA computation. Since then, it
has been a surge of research in the DNA computation
field. DNA computation has emerged in an exciting new
research field at the intersection of computer science, biol-
ogy, mathematics, and engineering. DNA computation has
been demonstrated to have the capability to solve prob-
lems considered to be computationally difficult for von
Neumann machines. After the Hamiltonian Path problem
was solved, several researchers proposed solutions to a
spectrum of NP-complete problems (such as Lipton [7])
dealing with satisfiability, cryptography, as well as other
search oriented problems.

Adleman’s [3] work has greatly influenced our work,
however, our approach is different. Adleman’s approach
was biochemical-oriented, while our approach is computer
science-oriented: (program+DNA)-oriented (based on su-
per DNA computer and/or modeling and simulation of
biochemical processes using the Easel or Prolog program-
ming languages). Stojkovic [12, 13, 14] and Steele [11].

DNA computing is a field that holds promise for ultra-
dense systems that pack megabytes of information into

devices the size of a silicon transistor. Each molecule of
DNA is roughly equivalent to a computer chip. With DNA
computing, in order to find a solution, DNA molecules are
primed to generate different chemical states. These mole-
cules can be examined to determine whether the molecules
have combined to form DNA strands or whether there is a
separation of DNA strands. Most of the possible solutions
are incorrect; however, one or a few may be correct.

We have assumed that DNA computations are error-
free, i.e., they work perfectly without any errors. However,
in reality DNA computations can be faulty because some
DNA operations can introduce errors.

DNA operations are constrained by biological feasibility.

DNA operations may be:

— realized by the present biotechnology or

— implemented by simulation on the conventional von-
Neumann computers.

6. DNA COMPUTATION MODEL

As computer components become smaller and/or more
compact, scientists and engineers dream of a chemical,
multi-processor computer, whose processors are individual
molecules involved in chemical processes.

Following this thinking, we propose DNA computation
model that involves the following three operations levels:

— Basic DNA operations (DNA molecular interactions);

— Test tube operations (proposed in 1996 by Gibbons,
Amos, and Hodgson [5]) such as: remove, union, copy,
select, and etc.

— High level operations

A sclection of Easel/C-like programming language
statements such as:

—begin-end (for grouping)

— if-then-else (for selection)

— for (for loop)

The basic DNA operations level is the chemical inter-
actions between DNA-s. It may be seen as machine pro-
gramming and may be interpreted as executions of machine
code. The basic DNA operations can be implemented at
DNA computers or simulated at vonNeumann machines.

The test tube operations level is an interface level that
serves as an interface between von-Neumann machine and
DNA machine. It may be seen as the hardware of a DNA
computer. The test tube operations can be implemented at
DNA computers or simulated at vonNeumann machines.

The high level operations — the programming language
level can be implemented using vonNeumann machines
with standard processors, operating systems, and program-
ming languages processors.

In the last twelve years DNA computation has emerged
as an exciting, fascinating, and important new research
field at the intersection of computer science, mathematics,
biology, chemistry, bioinformatics, and engineering.

The main reasons for the interest in DNA-computations
are:

— size and variety of available DNA molecular "tool
boxes"

— massive parallelism inherent in laboratory and chemi-
cal operations on DNA molecule

— feasible and efficient models

— physical realizations of the models

— performing computations in vivo.

559

Becthuk TT'Y, 1.11, Bbin.4, 2006

Unfortunately it is still not clear whether DNA comput-
ing can compete (or will be able to compete in the near
future) with existing electronic-digital computing. We pro-
pose that in the near future it will be possible to join von-
Neumann and DNA computer in a functional super bio-
computer. We are confident that in 10-20 years our desk-
top computers will be evolved into biocomputers. These
machines will be able to perform calculations in seconds
that take today’s PCs hours, and solve in hours problems
that take today’s PCs years.

A computational substrate — a substance that is acted
upon by the implementation of DNA computational model
is DNA. DNAs are represented by strings. DNA computa-
tional model operates upon sets of strings. A DNA compu-
tation starts and ends with a single set of strings.

A DNA algorithm is composed of a sequence of opera-
tions upon one or more sets of strings. At the end of the
DNA algorithm’s execution, a solution to the given prob-
lem is encoded as a string in the final set.

Characterization of DNA computations using tradi-
tional measures of complexity, such as time and space is
misleading due to the nature of the laboratory implementa-
tion of DNA computation. One way to quantity the time
complexity of a DNA-based algorithm is to count the re-
quired numbers of “biological steps™ to solve the problem.
The biological steps include the creation of an initial li-
brary of strands, separation of subsets of strands, sorting
strands by length, chopping and joining strands, and etc.

7. BASIC DNA OPERATIONS

An assignment is a finite sequence of unit assignments.
An unit assignment is coded by a DNA strand. All unit
assignments of an assignment have the same length.
The most important basic DNA operations are:
— Append (Concatenate, Rejoined) — appends two
DNA strands with ‘sticky ends’
— Melt (Anneal, Renaturation) — breaks two DNA
strands with complementary sequences
— Cut -- cuts a DNA strand with restriction enzymes.
Append Operation: append(alpha, beta, gama)
Input:
— the unit assignment alpha and
— the unit assignment beta.
Output:
— the unit assignment gama.
Append operation appends the unit assignment alpha with
the unit assignment beta.
The unit assignment beta can be appended at the beginning
or at the end of the unit assignments alpha.
gama = beta . alpha or gama = alpha. beta
The default is at the beginning.
Melt Operation: melt(alpha, beta, gama)
Input:
— the unit assignment alpha and
— the unit assignment beta.
Output:
— the unit assignment gama.
Melt operation melts the unit assignment alpha with the
unit assignment beta.
Unit assignment alpha can be melted from the beginning or
from the end.
Default is from the beginning.
Cut Opperation: cat(alpha, i, beta)

560

Input:

— the unit assignment alpha and

— the non negative integer i.
Output:

— the unit assignment beta.
Cut operation cuts the unit assignment alpha for i-places.
Unit assignment alpha can be cutted from the beginning or
from the end.
Default is from the beginning.
If cut length i is equal to 0, cut operation has no effect.
If cut length i is greater than the maximum length of unit
assignment alpha, the result will be empty.

8. TEST TUBE OPERATIONS

A test tube contains an assignment.

The most important test tube operations are:

— Union (Merge, Create) — pours the context of more
tubes into one tube

— Copy (Duplicate, Amplify) — makes copies of a tube

— Separate — separates an assignment into a finite se-
quence of assignments sorted by the length of unit assign-
ments

— Detect — confirms presence or absence of an unit as-
signment in a tube

— Select — selects from an assignment an unit assign-
ment on the uniformly random way

— Append (Concatenate, Rejoined) — appends an unit
assignment to each unit assignment of an assignment

— Melt (Anneal, Renaturation) — melts each unit as-
signment of an assignment with an unit assignment

— Extract — extracts the context of one tube into two
tubes using a pattern unit assignment

— Remove — removes unit assignments that contain oc-
currence(s) of other unit assignments

— Cut — cuts each unit assignment of an assignment for
the given length.

Union (Merge, Create) Operation:

—Union({T\, ..., T;, ..., T}, T or

~ Union({T,}, T)
Input: the finite sequence of tubes {7, ..., 75, ..., Ti}.
Output: the tube T that contains the content of tubes 7,
wherei=1, ..., m.
Copy (Duplicate, Amplify) Operation:

—COpy(T, {Tl! veey T,’ ey Tm}) or

= CopnT. {T,})
Input: the tube T.
Output: the finite sequence of tubes {7, ..., T, ..., T,,}. The
tube T;, where i = 1, ..., m, contains the content of the tube 7.
Separate Operation:

— Separate(T, {T,, ... T, ..., T,,}) or

— Separate(T, {T,})
Input:

— the tube T.
Output:

—the finite sequences of tubes {77, ..., Tj, ..., T},
where m < max(length(DNA strand)). The tube 7. where
i =1, ..., m, contains DNA strands of the length i, where
1<m.

Separate operation separates an assignment into a finite
sequence of assignments sorted by the length of unit as-
signments.

Detect Operation: DetecT)
Input:

Becruuk TI'Y, 1.11, BBIn.4, 2006

—the tube T.
Output:

— true, if the tube T contains at least one unit as-
signment;

— false, if the tube T contains zero unit assign-
ments.
Select Operation: Select(T, alpha;)
Input:

— the tube T that contains the finite sequence of
unit assignments {alpha,,}.
Output:

— the unit assignment alpha;.

Select operation selects from the tube T that contains
the finite sequence of unit assignments {alpha,} an unit
assignment alpha; on the uniformly random way.

If the tube T is empty, then the empty unit assignment
will be returned.

Append Operation: Append(S, beta;, T)
Input:

— the tube S that contains the finite sequence of
unit assignments {alpha,,} and

— the unit assignment beta;.

Output:

— the tube T that contains all unit assignments
alpha,, of the tube S concatenated to the unit assignment
beta,.

The unit assignment beta; can be appended at the be-
ginning or at the end of the unit assignments alpha,,.
tube 7 = {beta, . alpha,,} or tube T = {alpha,, . beta,}

The default is at the beginning.

Melt Operation: Mel«(S, beta,, T)
Input:

— the tube S that contains the assignment alpha —
that is

— the finite sequence of unit assignments
{alpha,,} and

— the unit assignment beta,,.

Output:

— the tube T that contains all unit assignments
alpha,, from the tube S melted with the unit assignment
beta,.

The unit assignment alpha,, can be melted from the be-
ginning or from the end.

The default is from the beginning.

Extract Operation: Extract(alpha, T, T\, T3)
Input:

— the unit assignment alpha and

— the tube 7.
Output:

— the tube 7 consisting of DNA strands from the
tube T that contains the unit assignment alpha as substrand
and

— the tube T, consisting of DNA strands from the
tube T that does not contain the unit assignment alpha as
substrand.

Extract operation extracts using the given pattern DNA
strands alpha the tube T into the tube 7T and the tube 75.
Remove Operation: Remove(T,, T,, T3)

Input:
—the tube 7, and
— the tube 7>.
Output:
— the tube T3.

The tube 75 contains the finite sequence of all unit as-
signments from the tube 7 that do not contain occurrences
of unit assighments from the tube 7.

Cut Operation: Cut(T), i, T;)
Input:

— the tube 7 that contains the finite sequence of
unit assignments {alpha,,} and

—the cut length £, i > 0.
QOutput:

— the tube 7, that contains all unit assignments of
tube 7 cut for the length i.

Cut operation cuts each unit assignment of an assign-
ment from the beggining for the given length.
DNA strands can be cut with restriction enzymes.

The test tube operations allow us to solve problems -
code DNA-based algorithms and write the appropriate
programs.

Test Tube Programming Language was proposed by
Lipton [7] and developed by Adleman [3] and then dis-
cussed at many places.

9. DNA REPRESENTATIONS

DNA representation of a string ¢, ... ¢, iS a sequence
c[1} ... ¢[m], where c[i] is the character at the position 7,
where i = 1, ..., m. Characters are uniquely encoded by
DNA strands.

1f an unsigned integer number is not used for numerical
calculations, then the unsigned integer number may be
represented as a string of digits.

DNA representation of an unsigned integer number
dy...d, is a sequence d[1]...d[m], where d[i] is the digit at
the position #, where i = 1, ..., m. Digits are uniquely en-
coded by DNA strands.

If an unsigned integer number is used for numerical
calculations, then the given DNA representation of an un-
signed integer number is not suitable because it does not
care on carries what complicates implementations of arith-
metic operations with unsigned integer numbers.

If 0 < m < 10, then a permutation of the integers
{1, ..., m} may be represented by unsigned integer num-
bers.

If 10 < m, then DNA representation of a permutation of
the integers {1, ..., m} is p[1V[1] ... plilvid] ... pmlvim]
where p[i] is the position i and v[i] is the value atthe
position i, where i = 1, ..., m. Positions and values must be
uniquely encoded by DNA strands.

10. APERMUTATION GENERATION
DNA-BASED ALGORITHM

Permutation generation algorithm generates the set of
all permutations

{Py, ..., Py | P, is m-th permutation of the integers
{1,...,m}and 1 <m<m!}.

The input set 7 is (the tube T contains) a finite se-
quence of unit assignments (DNA strands) that represents
candidates for permutations.

The output set T is (the tube T contains) a finite se-
quence of unit assignments (DNA strands) that represents
permutations.

The input set 7 may be created using the following
CreatelnputSet(m, T) algorithm.

561

Becthuk TT'Y, 1.11, Brin.4, 2006

procedure CreatelnputSet(m, T) // m is input; T is output

s
t

7=
for (i=1;i<=m; i++)

!
1

Copy(T. { TIm] }); .
for(j = 1: j<=m; j++) { Append(T1/1, j, TU]); }
Union({ 7Tm] }, T);

b
s

// empty

1
1

The output set 7" may be created using the following
PermutationGeneration(7) algorithm.
PermutationGeneration(7) /1 T is input and output

{
for(i=1;i<=m~1;i++)
{
b
Copy(T, {TIml]});
for(j = 1; j <= m; j++) // may be executed
in parallel
{
SU1={i-jy; W k>=i
for (k=i+1; k <= m; k++) { SIj] = S/}
Uikjys b
Remove(TT/], SUl. TU1);
B
Union({Tm]}, T);
3
)

The frame of the algorithm is sequential.

Test tube operations execute in parallel.

The whole algorithm is semi-parallel.

Explanations

Jj means the unsigned integer number j from the range
1..m.

—j means all unsigned integer numbers from the range
1 .. m, not equal to .

=A{1,..,m\{}={L, ., -1+, ..., m}.

i j means the unsigned integer number j from the range
1 .. m at the position /.

i~ means all unsigned integer numbers from the range
1..m, not equal to j atthe position i.

Remove(T1/], {i —J. kj}) removes from the tube 77;] all
DNA strands which contain at least one occurrence of the
DNA substrands / —j and/or k.

Remove(TT/], {i =, kj}) saves in the tube 7T[j] only
DNA strands which contain at the position i the value j and
does not contain at other positions the value ;.

At the end of the computation each of the surviving
strings will contain exactly one occurrence of each un-
signed integer number from the set {1, ..., m} and so
represents one of the possible permutations.

Complexity

Complexity of Permutation Generation DNA-based
algorithm is O(m) parallel-time.

Program Execution

Permutation Generation DNA-based program may be
executed:

— step by step in a DNA-lab or on a DNA-computer

— automatically on a super DNA-computer or on an
electronic-digital computer

(for small (less then 10) number of elements).

Test Example

The purpose of the test example is to "visualize" execu-
tion of Permutation Generation DNA-based algorithm.

562

The number of elements is 3.
CreatelnputSet(3, T);

T

111 112 113 121 122 123 131 132 133
211 212 213 221 222 223 231 232 233
311 312 313 321 322 323 331 332 333

Copy(T. {T11]. T12]. T131});

T[1] T(2] T[3]

111 112 113 111 112 113 111 112 113
121 122 123 121 122 123 121 122 123
131 132 133 131 132 133 131 132 133
211 212 213 211 212 213 211 212 213
221 222 223 221 222 223 221 222 223
231 232 233 231 232 233 231 232 233
311 312 313 311 312 313 311 312 313
321 322 323 321 322 323 321 322 323
331 332 333 331 332 333 331 332 333

Remove(7T1], {1 1,2 1,3 1}, TT1]);
Remove(712], {1 —2,2 2, 3 2}, 712]);
Remove(773], {1 —3,2 3, 3 3}, T13]);

T[1] T[2] T[3]
122 123 132 133|211 213 231 233[311 312 321 322

Union({7T1], 712}, T131}. 1);

T

122 123 132 133
211 213 231 233
311 312 321 322

Copy(T, {111}, T12}, TI313):

T[1] T(2) T(3]

122 123 132 133 (122 123 132 133 (122 123 132 133
211 213 231 233 {211 213 231 233 (211 213 231 233
311 312 321 322 |311 312 321 322 }311 312 321 322

Remove(7T1], {21, 3 1}, TT1]);
Remove(T12], {22, 3 2}, TI2]);
Remove(T13], {23, 3 3}, T13]);

TE1] T(2] T[3]
213 312 123 321 132 231

Union({TT1]. 712, 71313, T);

T

213 312
123 321
132 231

Set T'is the output - the result.
11. CONCLUSION

A Permutations Generation DNA-based Algorithm-
Program is written in C/Easel-like programming language.
It represents a DNA computer and computing environment
based on DNA operations. This type of framework enables,
facilitates, and supports the work of bioinformatics scien-
tists and researchers in the field. Tools such as DNA com-
puters will allow:

Bectuuk TT'Y, T.11, Brin.4, 2006

— Bioscientists to better understand the fundamental
processes involved in biological systems and perhaps aid in
predicting likely behaviors;

— Computer scientists to better understand parallelism
and maybe to get the new parallel-oriented ideas.

12. FUTURE RESEARCH

Our future research will be focused on:

— Hunting/searching the new so-called “killer applica-
tions” — that is applications of DNA computation that
would establish its superiority within a certain domain. Our
favorite domains are: computer security & information
assurance (cryptography), DNA-controlled devices, DNA-
motors, and etc.

We believe that an assured future for DNA computa-
tion can only be established through the discovery of such
and other applications of DNA-computations;

— Introducing through permutation generation count-
ing, recursion, and iteration — the fundamental concepts of
the classical computer science — into DNA-computation.

REFERENCES

1. Adleman .M. Molecular Computation of Solutions of Combinatorial
Problems. 1994. Science, 266. P. 1021-1024.

2. Adleman 1.M. On Constructing a Molecular Computer // R. Lipton and
E. Baum, editors, DNA Based Computers, Discrete Mathematics and
Theoretical Computer Science Series. American Mathematical Society.
1995. V. 27.P. 1-21.

3. Adleman I1.M. Computing with DNA // Scientific American. 1998.
V. 279(2). P. 54-61.

4. Feynman R.P. There’s plenty of room at the bottom. Miniaturization,
Reinhold, 1961.

Gibbons A., Amos M. and Hodgson). Models of DNA computation:
Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science. Springer. 1996.

Lehmer D.H. Teaching combinatorial tricks to a computer // Proceed-
ings of Symposium Appl. Math, Combinatorial Analysis. American
Mathematical Society, Providence, R. 1. 1960. V. 10. P. 179-193.
Lipton R.J. DNA solution of hard computational problems. Science.
1995. V. 268. P. 542-545.

Ord-Smith R.J. Generation of permutation sequences Part 1 // Com-
puter. 1970. V. 13. Ne 3. P. 152-155.

Ord-Smith R.J. Generation of permutation sequences: Part 2 // Com-
puter 1971, V. 14, Ne 2. P. 136-139.

Sedgewick R. Permutation Generation Methods // Computing Surveys
1977.V. 9. Ne 2. 137-164.

. Steele G. and Stojkovic V. Agent-Oriented Approach to DNA Comput-

ing (6 pages poster presentation) in Proceedings, Poster, Workshops,
and Demo Abstracts of CSB2004 Conference, Stanford, CA. 2004. Au-
gust. P. 16-19.

Stojkovic V., Huo H. and Britto I\. DNA Based Addition and Subtrac-
tion of Two Unsigned Integer Numbers Inspired by Unrestricted Gram-
mars Implemented in Prolog Language (6 pages poster presentation) in
Proceedings, Poster, Workshops, and Demo Abstracts CD of CSB2006
Conference, Stanford, CA. 2006. August. P. 14-18.

Stojkovic V. and Huo H. DNA Based Addition and Subtraction of Two
Unsigned Integer Numbers Inspired by Unrestricted Grammars (| page
poster presentation) in Proceedings of DNA12 Conference, Seoul, South
Korea. 2006. June. P. 5-9.

Stojkovic V., Steele . and Lupton W. Using Easel for Modeling and
Simulating the Interactions of Cells in Order to Better Understand the
Basics of Biological Processes and to Predict Their Likely Behaviors (6
pages poster presentation) in Proceedings, Poster, Workshops, and
Demo Abstracts of CSB2003 Conference, Stanford, CA. 2003. August.
P.11-14.

Tompkins (. Machine attacks on problems whose variables are permu-
tations // Proceedings of Symposium Appl. Math., Numerical Analysys,
N. Y., 1956. V. 6. McGraw-Hill, Inc. P. 195-211.

IMocrynuna B penakumio 12 asrycra 2006 r.

563

